General Instructions: -

1. All Questions are compulsory.
2. This Question Paper contains 29 questions.
3. Section A contains 4 Questions carrying 1 mark each.
4. Section B contains 8 Questions carrying 2 marks each.
5. Section C contains 11 Questions carrying 4 marks each.
6. Section D contains 6 Questions carrying 6 marks each.

Section A		
		Marks
Q1.	Find the value of a and b for which $\left[\begin{array}{cc}a & b \\ -a & 2 b\end{array}\right]\left[\begin{array}{c}2 \\ -1\end{array}\right]=\left[\begin{array}{l}5 \\ 4\end{array}\right]$.	1
Q2.	State where the function $f: N \rightarrow N$ given byf(x) $=5 \mathrm{x}$ is injective.	1
Q3.	Let * be the binary operation on N given by $a * b=\operatorname{HCF}(a, b) a, b \in N$. write the value of 22 * 4 .	1
Q4.	If $\|\vec{a}+\vec{b}\|=\|\vec{a}-\vec{b}\|$, show that \vec{a} and \vec{b} are perpendicular.	1
Section B		
Q5.	The side of an equilateral triangle is increasing at the rate of $0.5 \mathrm{~cm} / \mathrm{sec}$. Find the rate of increase of the perimeter.	2
Q6.	Find the angle between $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ if $\vec{a}=2 \vec{\imath}-\vec{\jmath}+\vec{k}$ and $\vec{b}=3 \vec{\imath}+\vec{\jmath}-2 \vec{k}$.	2
Q7.	If $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$, prove that $A^{3}-4 A^{2}+A=0$.	2
Q8.	Solve: $\tan ^{-1} 2 \mathrm{x}+\tan ^{-1} 3 \mathrm{x}=\frac{\pi}{4}$.	2
Q9.	Evaluate: $\int_{1}^{2}\left(\frac{x-1}{x^{2}}\right) e^{x} \mathrm{dx}$.	2
Q10.	If $\mathrm{y}=\sin ^{-1} \mathrm{x}$ show that $\left(1-\mathrm{x}^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=0$.	2
Q11.	Solve the differential equation $\frac{d y}{d x}=\mathrm{y}\left(\mathrm{e}^{\mathrm{x}}+1\right)$.	2
Q12.	Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{4} x}{\sin ^{4} x+\cos ^{4} x} d x$	2
Section C		
Q13.	Find the constant a and b so that the function ' f ' defined below is continuous at 3 and 5 $f(x)=\left\{\begin{array}{c} 1, x \leq 3 \\ \mathrm{ax}+\mathrm{b}, 3<x<5 \\ 7, \geq 5 \end{array}\right.$	4
Q14.	Differentiate the following w.r.to x : $\mathrm{y}=\mathrm{x}^{\cos \mathrm{x}}+\cos \mathrm{x}^{\mathrm{x}}$.	4
Q15.	For the function $f(x)=-2 x^{3}-9 x^{2}-12 x+1$, find the interval in which $f(x)$ is increasing and decreasing.	4
Q16.	Evaluate: $\int \frac{1+\cot x}{x+\log \sin x} d x$.	4
Q17.	Consider the binary operation * on the set $\{1,2,3,4,5\}$ defined by minimum (a, b) . Write the operation table of the operation *.	4
Q18.	If $\vec{a}=\vec{\imath}-\vec{\jmath}+2 \vec{k}$ and $\vec{b}=2 \vec{\imath}+\vec{\jmath}-\vec{k}$, find $(2 \vec{a}-\vec{b}) \times(\vec{a}+2 \vec{b})$.	4
Q19.	Show that the function $f: R \rightarrow R$ defined as $f(x)=x^{2}$ is neither one -one nor onto.	4

Q20.	Sum that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is $\frac{2 R}{\sqrt{3}}$.	4
Q21.	Solve the differential equation $\left(x^{3}+y^{3}\right) \mathrm{dy}-\mathrm{x}^{2} \mathrm{ydx}=0$.	4
Q22.	Without expanding, show that $\left\|\begin{array}{ccc}\operatorname{cosec}^{2} x & \cot ^{2} x & 1 \\ \cot ^{2} x & \operatorname{cosec}^{2} x & -1 \\ 42 & 40 & 2\end{array}\right\|=0$	4
Q23.	Find the area of the region $\left\{(x, y): x^{2}+y^{2} \leq 4, x+y \geq 2\right\}$.	4
Section D		
Q24.	Determine which of the following binary operation on the set N are associative and which are commutative. $\begin{array}{ll} \text { i. } & \vec{a} * \vec{b}=1, \forall \mathrm{a}, \mathrm{~b} \in \mathrm{~N} \\ \text { ii. } & \vec{a} * \vec{b}=\frac{a+b}{2}, \forall \mathrm{a}, \mathrm{~b} \in \mathrm{~N} \end{array}$	6
Q25.	Solve using matrices $\quad$$x-y+z=1$ $2 x+y-z=2$ $x-2 y-z=4$.	6
Q26.	Using properties of determinants, prove that the following $\left\|\begin{array}{ccc} 3 a & -a+b & -a+c \\ a-b & 3 b & c-b \\ a-c & b-c & 3 c \end{array}\right\|=3(\mathrm{a}+\mathrm{b}+\mathrm{c})(\mathrm{ab}+\mathrm{bc}+\mathrm{ac}) .$	6
Q27.	If the lengths of three sides of a trapezium other than base are equal to 10 cm , then find the area of the trapezium when it is maximum.	6
Q28.	Draw a rough sketch and find the area of the region bounded by the two parabolas y^{2} $=4 x$ and $x^{2}=4 y$ by method of integration.	6
Q29.	Evaluate: $\int \frac{2 x+1}{\sqrt{x^{2}+4 x+3}} d x$. Or Evaluate the following definite integrals as limit of sums: $\int_{1}^{4}\left(x^{2}-x\right) d x$.	6

