TIME: 3 HRS
MM: 70

General Instructions:

1. All questions are compulsory.
2. Marks for each question are indicated against it.
3. Question numbers 1 to 5 are very short answer question and carries 1 mark each.
4. Question numbers 6 to 12 are short answer question and carries 2 mark each.
5. Question numbers 13 to 24 are also short answer question and carries 3mark each.
6. Question numbers 25 to 27 are long answer question and carries 5 mark each.
7. Use log tables, if necessary. Use of calculators is not allowed.

Q. 1	Which Point defect decreases the density of a crystal?	1M		
Q. 2	Why ionic solids conduct in molten phase?	1M		
Q. 3	Which will adsorb more gas, a lump of charcoal or powdered charcoal. Why?	1M		
Q. 4	What is the expected Van't Hoff factor for $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ when it completely dissociates in water?	1M		
Q. 5	Write the IUPAC name of $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$	1M		
Q. 6	Complete the following chemical reaction equations (i) $\mathrm{XeF}_{2}+\mathrm{H}_{2} \mathrm{O}$ (ii) $\mathrm{PCl}_{5}+\mathrm{H}_{2} \mathrm{O}$	2M		
Q. 7	Differentiate between $\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} 2$ reaction mechanism.	2M		
Q. 8	Write all the steps involved in the extraction of Cu from Copper pyrites	2M		
Q. 9	Complete the following chemical equation- (i) $\mathrm{MnO}_{4}{ }^{-}+\mathrm{Fe}^{2+}+\mathrm{H}^{+}$ (ii) $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+\mathrm{Sn}^{2+}+\mathrm{H}^{+}$	2M		
Q. 10	i) State Henry's law for solubility of a gas in a liquid. ii) At the same temperature hydrogen is more soluble in water than helium, which of them is having a higher value of KH and why?	2M		
Q. 11	Arrange the Following in increasing order against the properties mentioned :i. $\mathrm{HOClO} 2, \mathrm{HOClO}, \mathrm{HOCl}, \mathrm{HOClO} 3$ (acidic strength) ii. $\mathrm{H}-\mathrm{I}$, H-F , $\mathrm{H}-\mathrm{Br}, \mathrm{H}$ Cl (Bond Dissociation Enthalpy)	2M		
Q. 12	[$\mathrm{Ni}(\mathrm{CO}$)4] has tetrahedral geometry while [$\mathrm{Ni}(\mathrm{CN}) 4] 2$ - is square planar. Explain.	2M		
Q. 13	Calculate the standard electrode potential of $\mathrm{Ni}^{2+} / \mathrm{Ni}$ electrode if emf of the cell $\mathrm{Ni}(\mathrm{s})\left\|\mathrm{Ni}^{2+}(0.01 \mathrm{~m}) \\| \mathrm{Cu}^{2+}(0.1 \mathrm{M})\right\| \mathrm{Cu}(\mathrm{s})$ is $0.59 \mathrm{~V}^{2}$ Given $\mathrm{E}^{0} \mathrm{Cu}^{2+} / \mathrm{Cu}=+0.34$ Volt. OR Calculate the cell emf for the following at $25^{\circ} \mathrm{C}$ $\mathrm{Zn}(\mathrm{~s})\left\|\mathrm{Zn}^{2+}(0.1 \mathrm{M}) \\| \mathrm{Cd}^{2+}(0.01 \mathrm{M})\right\| \mathrm{Cd}(\mathrm{~s})$ Given $\mathrm{E}^{0} \mathrm{Zn}^{2+} / \mathrm{Zn}=-0.763 \mathrm{~V}, \mathrm{E}^{0} \mathrm{Cd}^{2+} / \mathrm{Cd}=-0.45 \mathrm{~V} 1 \mathrm{~F}=96500 \mathrm{C} \mathrm{mol}^{-1}, \mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{Mol}^{-1}$	3M		
Q. 14	What happens when a) A colloidal solution of $\mathrm{Fe}(\mathrm{OH})_{3}$ and $\mathrm{As}_{2} \mathrm{~S}_{3}$ are mixed. b) A beam of light is passed through a colloidal solution. c) Continuous dialysis of a colloidal solution takes place. OR a) An electric current is passed through a colloidal solution. b) Alum is applied to a freshly bleeding wound. c) River water meets sea water.	3M		

Q. 15	Describe the role of following: i) $\quad \mathrm{NaCN}$ in froth floatation process. ii) CO in Mond's process. iii) Cryolite in the metallurgy of aluminium	3M
Q. 16	a) Differentiate between amorphous and crystalline solids. b) If X occupies $1 / 2$ tetrahedral voids and Y occupies $2 / 3$ of the octahedral voids. What is the formula of compound.	3M
Q. 17	A) Account for following: i) Of the d^{4} species, $\mathrm{Cr}(\mathrm{II})$ is strongly reducing while $\mathrm{Mn}(\mathrm{III})$ is strongly oxidising. ii) Transition metals and their many compounds form coloured compounds. B) What is Lanthanoid contraction?	3M
Q. 18	a) Out of 1 M urea and 1 M KCl which will have a maximum freezing point and why? b) Calculate the freezing point of a solution containing 18 g glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ and 68.4 g sucrose $\mathrm{C}_{12} \mathrm{H}_{22} 0_{11}$ in 200 g of water the freezing point of pure water is 273 K and K_{f} for water is $1.86 \mathrm{~K} \mathrm{Kg} \mathrm{mol}^{-1}$	3M
Q. 19	Find the type of lattice and radius of an atom, for a cube having edge length of 400 pm , atomic $\mathrm{wt} .=60$ and density $=6.23 \mathrm{~g} / \mathrm{cc}$.	3M
Q. 20	Explain- a. Peptization b. Hardy Schulze Rule c. Electrokinetic potential	3M
Q. 21	Define with reaction a) Sandmeyer reaction b) Finkelstein reaction c) Wurtz-Fittig reaction	3M
Q. 22	The rate constant of a first order reaction becomes 5 times when the temperature is raised from 350 K to 400 K . Calculate the activation energy of the reaction. Draw the graph representing the effect of catalyst on rate of a reaction.	3M
Q. 23	Based on valence bond theory explain the geometry and give the magnetic nature of the given complex: $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$	3M
Q. 24	Explain - a. KCN gives alkyl cyanide whereas AgCN gives alkyl isocyanide on reaction with alkyl halide. b. Alkyl chlorides gives alcohols on reaction with aqueous KOH but form alkenes in presence of alc. KOH . c. Grignard reagents should be prepared under anhydrous conditions.	3M
Q. 25	a) For the reaction $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$, it is found that doubling the concentration of A increases the rate by 4 times, and doubling the concentration of B doubles the reaction rate. What is the overall order of the reaction? b) In a certain first order reaction, half the reaction was decomposed in 500 seconds. How long will it take for 90% completion? c) Define rate constant. OR a) The half life for a first order reaction is $5 \times 10^{4} \mathrm{~s}$. What percentage of the initial reactant will react in 2 hours. b) Write the equation for collision theory. c) The half life of radioactive decay of C-14 is 5730 years. An archeological artefact containing wood had only 80% of the $\mathrm{C}-14$ found in living tree .Estimate the age of the sample .	5M
Q. 26	(a) Draw the structure of (i) XeOF_{2} (ii) HClO_{4} (b) How would you account for the following : (i) NH_{3} is a stronger base than PH_{3}	5M

	(ii) Sulphur has a greater tendency for catenation than oxygen. (iii) F_{2} is a stronger oxidising agent than Cl_{2} OR (a) Draw the structure of oleum and pyrophosphoric acid. (b) Arrange the following in the increasing order of property indicated. (i) $\mathrm{H}-\mathrm{F}, \mathrm{H}-\mathrm{Cl}, \mathrm{H}-\mathrm{Br}, \mathrm{H}-\mathrm{I}$ (Acidic nature) (ii) $\mathrm{NH}_{3}, \mathrm{PH}_{3}, \mathrm{AsH}_{3}, \mathrm{SbH}_{3}, \mathrm{BiH}_{3}$ (Basic nature) (iii) $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}, \mathrm{H}_{2} \mathrm{Te}, \mathrm{H}_{2} \mathrm{Po}$ (Boiling point)	
Q. 27	a) What is fuel cell? Give balanced equations of the occurring reactions. b) How many Coloumbs are required for oxidation of 1 mole of FeO to $\mathrm{Fe}_{2} \mathrm{O}_{3}$? c) Predict the products of electrolysis obtained at the electrodes in each case when the electrodes used are platinum. (a) An aqueous solution of AgNO_{3} (b) A dilute aqueous solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ OR a) At infinite dilution the molar conductance of Na^{+}and $\mathrm{SO}_{4}{ }^{2-}$ ions are 50 and $160 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively. What will be the molar conductance of sodium sulphate at infinite dilution? b) What is the function of salt bridge?	5M

